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Abstract. The prediction of loop conformations is one
of the challenging problems of homology modeling,
owing to the large sequence variability associated with
these parts of protein structures. In the present study, we
introduce a search procedure that evolves in a structural
alphabet space deduced from a hidden Markov model to
simplify the structural information. It uses a Bayesian
criterion to predict, from the amino acid sequence of a
loop region, its corresponding word in the structural
alphabet space. The results show that our approach
ranks 30% of the target words with the best score, 50%
within the five best scores. Interestingly, our approach is
also suited to accept or not the prediction performed.
This allows the ranking of 57% of the target words with
the best score, 67% within the five best scores, accepting
16% of learned words and rejecting 93% of unknown
words.

Key words: Loop conformation — Conformation
prediction — Proteins

1 Introduction

One of the most challenging problems in homology
modeling remains the prediction of loop conformations.
Being the less conserved regions of protein structures,
they often cause serious errors in protein models because
of their flexibility and the preferred occurrence of
insertions and deletions. They are, however, often
known to play an important role in protein function
and stability [1]. Loop regions are organized as nonre-
petitive conformations connecting regular secondary
structures. They represent, on average, close to 30% of
a protein. Although the conformations of these regions
are, by essence, irregular, many preferred conformations
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have been identified [2, 3, 4, 5]. Some, authors have also
suggested a relationship between loop conformation and
sequence [6, 7].

Several attempts have been made to automate the
prediction of the conformation of the loops. Owing to
the number of possible conformations, the prediction of
the conformation of loops has often been considered
using conformational sampling techniques [8, 9, 10, 11].
A possible limitation of the size of the combinatorial
is to look for conformations existing in the protein
structures [12, 13, 14].

Finally, with the increasing number of structures
available, several attempts have been carried out to
classify the loop conformations and to extract some
relationship with their associated sequences to perform
prediction [15, 16, 17, 18, 19]; however, doing so, the
authors are confronted with the problem of defining the
different representative conformations used as templates
and of establishing a relationship with some sequence
signature.

Here, we explore whether a structural alphabet,
composed of structural building blocks (SBBs), learned
by applying a hidden Markov model (HMM) [20] from a
collection of known structures, can be used to discretize
the loop conformational space and to perform confor-
mational prediction from loop amino acid sequence.
Previous work has shown that the distribution of SBBs
differs according to loop type [21].

The advantage of using a structural alphabet is that it
simplifies the structural information, hence the combi-
natorial problem associated with the conformational
search. Also, using such representation, it is, in theory,
possible to perform a fast search for classes of “words”
that could represent the conformation of a given loop.
Finally, such a representation is well suited for auto-
mated search. The aim of our work consists of searching
for words of fixed size characterizing exhaustively the
different three-dimensional configurations of coils and
predicting these words from the sequence windows
(encompassing these series of structural blocks) by
a Bayesian approach using probability estimations
deduced from Dirichlet functions. A criterion of



predictability which indicates the ability of discriminating
the words learned (i.e. those present in the training set of
coils) and the new words (i.e. the configurations newly
appearing in the assessing set of coils) is introduced.

2 Methods

2.1 Definition of the structural alphabet

The structural alphabet used in this study was obtained by fitting
a HMM on a collection of proteins of known structure [20]. The
structures were described as consecutive overlapping blocks of four
residues. Each block was described by a four-distances vector: the
three distances between the nonconsecutive a-carbons (dc,i—c,3.
dc,1—c,4, dc,2—c,4) and the oriented distance of the last a-carbon to
the plane formed by the first three. Given such data, HMM then
produces a short SBB description of the structures. The dependence
between the successive SBBs is taken into account by a first-order
Markov chain. The geometry associated with each block is reported
in Table 1. Note that SBBs are not only described by their geometry
but also by their transitions with others. For example, SBBs «; and
oy, describing a-helices, close in terms of geometry, are distin-
guishable by their transitions, while ; and f,, strongly connected,
both decompose f-strands. The variability of each SBB is less than
1 A. Since in this study, we are interested in the loops connecting
some elements of secondary structure, the distribution of each SBB
in the three usual secondary structure types (helix, coil or ff-strand)
is also reported. The transition matrix associated with the Markov
process is described in Ref. [20].

2.2 Encoding of the protein structures in the structural alphabet space

Knowing both the average geometry associated with each SBB and
the transition matrix associated with the first-order Markov pro-
cess, it is possible to translate from protein three-dimensional
coordinates into the SBB space, or “alphabet space”, by using the
Viterbi algorithm [22]. This algorithm directly estimates the most
probable series of SBBs underlying a structure. Its advantage is that
it is, in theory, much more accurate than a simple step-by-step
procedure. Hence, the use of the transition matrix between blocks is
implicitely taken into account in the present study.

2.3 Collection of protein structures

The encoding into the alphabet space was performed for a
collection of nonredundant protein structures taken from the
“culled PDB” (http://www.fccc.edu/research/labs/dunbrack/culled-
pdb.html). In order to keep a balance between the largest number
of proteins selected for learning and the representativity of the

Table 1. Description of the 12 sorts of structural building blocks
(SBBs). dy, d», d3, ds: mean and standard deviation of the four-
distance values (see Methods) for the average conformation (in
angstroms). rmsdw: similarity index within each SBB, as estimated
from the average root-mean-square deviation obtained on a sample
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dataset, we used the non redundant set presenting less than 50%
sequence identity. Since loop sequences are known to be less con-
served than core sequences [23], sequence identity of the loops is
expected to be lower. We removed the proteins for which some
ambiguity occur in the coordinates, such as missing residue or the
presence of alternative conformations. This resulted in a collection
of 878 proteins, representing after encoding a total of 195, 421 SBBs.

2.4 Identification of loops in the alphabet space

Given a protein description according to the structural alphabet,
each loop is identified by a “‘structural alphabet word”. For
example, for oo loops, we search for words of given length, /,
delimited on both sides by two occurrences of SBBs a1 or «2. The
pattern is thus: 2{o, 00} — [(X) — 2{o1, o2}, where [/ is the length of
the loop and X is any character (no series of a; or o) apart from
oy or oy at the two first and two last locations. In this study, we
considered oo and B loops using {a;,0} and {f,B,}, respec-
tively, as bounds, from three to 13 residues long (3 <7< 13) and
their associated words. This results in a bank of structural alphabet
words noted word; describing loops of length / for oo loops or 8
loops type. For each / value, classes of words are defined, those
differing by at least one SBB. We give the label class;; to a
particular class of words among a collection of N; words found in
the learning set to describe a given type of loop of length /.

2.5 Scoring function

To predict words of length / starting from a sequence in the 20

amino acid sequence space, we use a score based on the a posteriori

probability calculated using Baye’s theorem:

p(sequence, /class; ;) x p(class )
p(sequence;)

p(classg ;/sequence;) = ,

)

where “sequence;” is related to a sequence of length / in the
20 amino acid description, “word” to a series of / letters in the
structural alphabet space and class,; is a class of words.
p(sequence;) can be estimated according to an independence
model of the / consecutive amino acids as []; f;, where f; is the
occurrence frequency of the observed amino acid i in the database.
We preferred to learn a contingency matrix specific for each type of
loop of length / on a window size of 4 + / + 4. The enlargement
of four residues both sides was done to take into account some
specificity of the flanking sequences. The probabilities p; ;; of the
occurrence of each amino acid type i in position j of a window of
size 4 + [ + 4 are obtained as
nij/i

= 2
Pz,]/l N] ’ ( )

of its associated segments. %: the proportion of corresponding
four-residue segments. «, coil, f: distribution of SBB segments on
the usual secondary structures. A four-residue segment is classified
in one secondary structure when its third central residue carbon is
assigned to it

SBBs 4, d> ds dy rmsdw (A) % o (32.9%)  Coil (47.2%) p (19.9%)
oy 545 + 0.11  5.13 £ 0.16 5.45 £ 0.11 292 £0.17 0.09 23.07 90.3 9.3 0.4
o 548 + 0.21 543 £ 035 553 £ 0.21 3.00 £ 0.40 0.20 14.84 62.9 36.7 0.4
of 581 £ 0.33 559 £ 047 591 £ 0.28 1.66 £ 0.60 0.26 3.52 31.5 67.3 1.2
o 557 £ 027 740 £ 098 5.65 £ 026 -3.18 £ 0.48 0.56 2.98 0.4 97.4 2.3
o, 5.64 £ 0.30 7.46 £ 0.83 5.67 £ 0.38 338 £ 044 0.38 3.63 31.0 67.9 1.1
71 6.65 £ 038 671 £ 1.18 5.61 £ 027 -024 £ 1.71 0.59 2.98 53 93.3 1.4
V2 6.20 £ 041  9.10 £ 0.32 567 £ 026 -0.18 £ 0.97 0.38 4.2 1.6 84.1 14.3
Vap 6.68 £ 031 857 £ 047 555+ 026 -2.54 +£ 053 033 5.62 80.2 19.8
VB 5.69 £ 0.27  8.25 £ 0.94 6.74 £ 0.32 1.60 £ 1.54 0.73 11.44 80.1 17.8
V8 6.81 £ 032 913 £ 089 6.71 £ 040 -0.61 £ 1.68 0.84 3.81 90.2 8.7
P2 6.74 £ 031 940 + 047 6.46 = 0.26 -2.36 £ 048 0.32 8.77 52.0 48.0
b 6.65 £ 0.31 10.11 £ 0.34 6.74 £ 0.30 -0.65 £ 0.67 0.34 15.05 23.6 76.4
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where n; ;; is the number of occurrences of amino acid type i at
location j of the window, among N; words obtained from the
database. Thus, we have

44i+4

p(sequence;) = H Pijji - 3)
j=1

Similarly, for each class k, we could estimate
44144

p(sequence; /classy ) = H Dij/kl > 4)
j=1

with

N j/k,i
ey = 25 5
DPij/k,1 Nk,l ( )

where 7; j/ ; is the number of occurrences of amino acid i in posi-
tion j of the window for the different occurrences of the class &, and
Ny, is the number of occurrences of the class k. Since Nj; may be
small, we use a different estimation of p; ;. ;, based on Dirichlet
functions:

ony /1 Rk ()

Pujfkt = oN; + Nk

where the coefficient o conditions the estimation. Low values of «
lead to an estimation of p; ;. ; close to values obtained for class k
using Eq. (5), while large values result in values close to that ob-
tained for the whole set of words obtained for length / with Eq. (2).

2.6 Criterion of acceptance of the prediction

The high variability of loops results in a possible large number of
words describing loops of the same length. Thus, it is possible that
words not learned in the learning set, called new words, appear in
the validation set. It is desirable to have some indicator of whether
the score associated with a given word from the amino acids
sequence using Eq. (1) can be related to some correct prediction.
To accept or not the prediction associated with a score, we use
an acceptance criterion based on the difference between the two
highest scores:

A\_, = p(classy;/sequence;)

rankl
— p(classy ;/sequence;) 0 - (7)

1600

1400

1200
@ | 868 944
E 1000
% 8OO 754
g
Z 600 b

397

400

200

Size loops

We accept the prediction if A_» is larger than a given threshold, 7,
i.e. when a large difference between the first and the second highest
scores is observed.

2.7 Quantification of the results

First we distinguish the rate of correct prediction (RCP) as the
fraction of words learned correctly predicted in the validation set.
A correct prediction will be either to obtain the best score for the
class the word belongs to, corresponding to a correct prediction at
the first rank noted RCP(1), or to obtain the class within the five
best scores, corresponding to a correct prediction at the fifth tank,
noted RCP(5).

For a given length /, the validation set consists of N, ; sequences
tested. It can be decomposed into two parts: sequences associated
with classes occurring in the learning set (“‘predictable classes™),
denoted as Ny, p, and those associated with “new” classes, denoted
as Ny np, (“not predictable classes™). In terms of the criterion of
acceptance of the prediction (Eq. 7), one can distinguish sequences
(Ns,12) for which the prediction is accepted and sequences (N na)
for which it is not.

We define

1. The “‘sensitivity” associated with the threshold T as the fraction
of the number of predictable sequences for which the prediction
is accepted (Nyja()Nsip). among the number of predictable
sequences Ny p.

2. The “‘specificity” associated with the threshold 7T as the fraction
of the number of unpredictable sequences for which the
prediction is not accepted (N na[)Ns,np), among the number
of nonpredictable sequences Ny np.

3 Results

3.1 Loop distribution

Figure 1 shows, for different lengths, the number of
words extracted from the database. Overall, 8,792 words

were extracted (3,750 for aa, 5,042 for f5). Other studies
found a mean loop number of 7.13 per protein in a

o5042 B
B3750 o

349
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Fig. 1. Distribution of ax and S
loops according to loop size



comparable database (50% identity, 1,411 proteins) [15,
19]. Here we have a mean loop number of 7.05. Also the
distribution of the loops as a function of their length is
similar (p < 0.001). We observe more f loops, accord-
ing to the observed presence of more f-strands in known
protein structures. For a length larger than 8, this is not
observed.

3.2 Distribution of words

The distribution of the number of words and classes for
different sizes is shown in Fig. 2. Since we chose a ratio
of 50% of the database as the learning set, we find a
number of words similar in the learning and validation
sets for different lengths. 50% of the 8,792 words appear
in the learning set and 56.4% of the 5,029 classes are
learned in it. Only 30% of the classes correspond to
short loop lengths (less than 7) with more than 67% in
the learning set.

The databank of words appears representative only
for sizes less than 7 (“‘short” sizes): the ratio classes/
words remains low (38% for aa and 25% for fpf).
Since the complexity of the conformational space
increases exponentially with word size, the number of
repeated words decreases when the size increases. For
lengths equal to or more than 7 and less than or equal
to 13 (“medium” sizes), the number of classes is close
to the number of words detected (i.e. a number of
occurrences close to 1 for each class). Thus, for large
sizes, the database is not representative enough to
obtain statistical significance of the results; however,
we kept this data since we wished to check the exis-
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tence of some specificity inherent to the relationship
SBB—amino acid sequence.

Finally, considering the two types of loops oo and 3,
we note that, despite the number of ff words being
larger for short sizes, the number of classes identified is
of the same order as for oo (2,564 versus 2,465). This
implies a reduced variability in the alphabet space for 5§
loops compared to oo loops and a better representativity
of the learning set. For instance, for a size of 3 and
for pp loops, more than 90% of the overall number of
classes occur in the learning set.

3.3 Assessment of the effectiveness of the prediction

A preliminary step was to optimize the Dirichlet weight.
The optimum (in terms of correct prediction) was
reached for a value of 0.1 for the a parameter. The
results are reported in Table 2.

For this value, the self prediction score (learning set)
is between 90 and 100% for all sizes. For the validation
set, we first focus on the prediction of classes occurring
in the learning set (occurrences of new classes of the
validation set are not considered). For short words (3—
6), for which the number of occurrences of each word is
more than 1.2, the mean prediction rate based on the
best rank score is 28.4% (29.1% for oo, 27.8% for Bpf).
This was obtained for a mean number of words of 236
for each size. For medium sizes (7—13) the score is 66.6%
(67.6% for aa, 53.7% for ff5), but with a number of
predicted words between 1 and 25. Considering the five
best scores instead of only the first one, the rates are
50.4% for short sizes (52.8% for oo, 48.0% for f) and

Number of words and classes for co and (3 loops
from 3 to 13 residus long

B Words of the learning set
OLearned classes

500
450

3750 ce words
350

300 |

=

25

200

150

Number of words and classes

0
3 4 5 6 7 8 9 10 11 12 13

B Words of the validation set
O New classes

I! 5042 B words
i 4 5 6 7 8
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words size

Fig. 2. Distribution of words and classes for aa and fff loops according to loop size
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Table 2. Prediction achieved for the learning and validation sets.
RCP(1): rate of correct prediction using best-ranked class (new
classes not considered); RCP(5): rate of correct prediction using the

five best-ranked classes (new classes not considered); RCP(1)*:
equivalent to RCP(1), but new classes considered (systematic bad
prediction)

Types Loop Learning set Validation set
of loops length
Number Number of RCP(1) Number New RCP(1) RCP(5) RCP(1)*
of words learned of words classes
classes
3 303 47 97.67 274 14 36.86 64.60 35.07
4 295 112 98.62 231 44 29.87 51.52 25.09
oo 5 252 151 99.19 93 106 23.66 38.71 11.06
6 191 154 100 46 120 26.09 56.52 7.23
Mean (3-6) 260.25 116 98.87 161 71 29.12 52.84 19.61
Mean (7-13) 120 121 100 5.86 128.71 67.59 83.86 2.78
3 429 26 90.38 432 7 40.97 75.23 40.32
4 474 96 91.43 442 28 25.11 45.70 23.62
pp 5 390 161 98.14 253 111 17 31.23 11.81
6 291 200 100 118 140 27.97 39.83 12.79
Mean (3-6) 396 120.75 94.99 311.25 71.50 27.76 47.99 22.13
Mean (7-13) 142 134 99.92 22.14 122.71 53.68 60.52 4.59
Mean (3-6) 328.13 118.38 96.93 61.03 72.43 88.19 57.10 32.55
o, B Mean (7-13) 229.30 127.36 99.96 14 125.71 60.64 72.19 3.68

72.2% for medium sizes (83.9% for aa, 60.5% for Bf).
These results show that the procedure has a relatively
good ability to predict learned words.

On introducing occurrences of new classes, not rep-
resented in the learning set, the scores of correct pre-
diction at the first rank are much lower, 20.9% for short
sizes, and decrease to 3.7% for medium sizes. These
results are simply due to the increasing complexity of
loops with length and thus to an increasing number of
new classes.

3.4 Validation of the acceptance criterion

Since for a real prediction test, one only knows the
sequence of the loop and one does not know a priori
whether the SBB word describing it was learnt, we now
analyze our results using an acceptance criterion.

The objective is here twofold: the identification of
predictable words (learnt) and the optimization of the
rate of correct prediction. For the first goal, we are in-
terested in discarding unpredictable words, i.e., to obtain
good specificity. For the latter, we prioritize the cor-
rectness of the prediction, even if this results in only a
few words being predicted (low sensitivity).

Two examples of words and associated predictions in
loops of type i for a length of 5 are given in Table 3.
For instance, class 1, corresponding to word y,0,0'a 7,4,
is repeated 15 times in the learning set and is observed 14
times in the validation set. It is correctly predicted at the
first rank on ten of 14 occasions (71.4%) and at the fifth
ranks in all cases. Using the criterion of acceptance
(T = 1.28), all sequences not correctly predicted at the
first rank are considered as unpredictable. Class 2 cor-
responds to a word ygy,007,575, Which is not present in
the learning set but is observed five time in the validation
set. It is always considered as unpredictable using the
criterion of acceptance.

Global results are reported in Table 4. We have
considered different thresholds for oo loops and ff
loops, and the results are presented for two sets of
thresholds. First, we focus on short sizes. For the first
thresholds (0.5 for oo, 0.64 for ff5), we have a mean
sensitivity of 15.6% and a specificity of 92.9% for short
words, meaning only a few predictable words were
extracted, but almost all nonpredictable words have
been discarded. Interestingly, among predictable words,
the score of well-predicted words is for the first rank
only 57.1% (compared to 28.4%) and increases to
66.9% for the fifth-best scores. For the second series
(1.5 for aoa, 1.28 for ), the sensitivity is lowered, but
results in a better score of well-predicted words
(62.1%). The specificity is slightly better (97.7%). For
larger values of the threshold, the sensitivity decreases,
and the set of predictable words is not representative
any longer; hence, the weight of each failure becomes
larger.

For medium words, we always obtain both good
sensitivity (53%, 48.6%) and good specificity (91.4%,
93.8%) but owing to the low number of occurrences of
the words (hence a poor learning) we only predict 24.1
and 28% of good predictions.

4 Discussion
4.1 How effective is the use of a structural alphabet?

In homology modeling, the structure of the backbone of
the flanking regions as well as the sequence of the query
region are assumed known. This study meets these
requirements, and we have focused on two particular
types of loops (aa, Bf).

We perform loop conformation prediction in a
structural alphabet space by accepting the equivalence
between this space and the three-dimensional space. By



Table 3. Examples of words and associated predictions using the
acceptance criteria. OLS: occurrence of class in the learning set;
OVS: occurrence of class in the validation set; criterion of
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acceptance: T = 1.28, (refer to Methods), (1 if the sequence is
considered as predictable, otherwise 0)

Classes OLS/OVS Words description Corresponding predictions
Observed Corresponding Proteins: Predicted Rank of T
words sequences first residue words (1) correct

prediction

1 15/14 Y2000 d Yo FRELVFDDEKGTVDF lobpA: 41 Vapood Vg2 3 0

1 15/14 Y2000 Py FGKFKLNLGTREMFR lopc: 6 P00 Py 1 1

1 15/14 Y2000 Py KKTAAWNSGTSTLTI lospO: 191 Y2000 ot Py 1 1

1 15/14 Y2000 oty HICVSWESSSGIAEF IsacA: 95 Y2000 ot Py 1 1

1 15/14 Y2000 Py DGVWTYDDATKTFT 2igd: 47 Y2000 o Py 1 1

1 15/14 Y2000 Py NVVIAFNAATNVLTV 2ltnA: 163 Y200 ot Py 1 1

1 15/14 Y2000 Py KVTVIYDSSTKTLSV 2pelA: 164 P00 ot Py 1 1

1 15/14 Y2000 Py TVALKADAANKQCRL 2sli: 114 P00 o Py 1 1

1 15/14 Y2000 Py EEFMRFNPRTGNWSG 3fruA: 119 Y2000 ot Py 1 1

1 15/14 Y2000 Py DRVDEVDHTNFKYNY Ibvl: 77 Yoot aYupa 4 0

1 15/14 Y2000 Py MTVTRFDSMTGAHFV 1bw9A: 14 Vapood gy p 3 0

1 15/14 Y200 Py TAISKVNSDTNSLLY 1a59: 18 Y200 Py 1 1

1 15/14 Y2000 Py QSTRIYDRETGEIHY 3tdt: 212 Y200 Py 1 1

1 15/14 Y2000 o Py GDLVTYDKENGMHKK  7ahlA: 25 VoY ot Va2 4 0

2 0/5 VEY1%2YapV g TVEVELTTEKGVFRS loneA: 20 y/;zo(laiya/;ﬁz - 0

2 0/5 VEV192) 0V p QLVNFQCKEDGIIAQ Iplg: 26 BaBrypap - 0

2 0/5 VEV1%2YapY B RGEALIQTAYGEMK lwapA: 53 ﬁz'})/;xdzotll'ya/} - 0

2 0/5 VEY1%2YapV g IVGIAVVNEHGRFFL 1xwl: 38 /32;)/;“0(20('1;)1/; - 0

2 0/5 VEY1%2YapV B DGTVFLSGAFGKIEM 2p0r: 60 VBV ap%2Yapy p - 0

Table 4. Effect of the acceptance criterion. Sensitivity, specificity, 7" refer to Methods. T1: T = 0.5 for ao; T = 0.64 for . T2: T = 1.5

for a; T = 1.28 for

Types Loop Validation set
of loops length
Sensitivity Specificity RCP(1) RCP(5)
T1 72 T1 72 T1 72 T1 72
3 19.34 9.12 92.86 100 77.78 96 88.89 100
4 23.81 11.26 93.18 100 56.90 69.23 72.41 88.46
oo 5 9.68 6.45 97.17 98.11 66.67 75 75.00 75
6 10.87 6.52 94.17 97.50 41.67 50 41.67 50
Mean (3-6) 15.92 8.34 94.34 98.90 60.75 72.56 69.49 78.36
Mean (7-13) 66.40 60.58 91.98 94.72 22.22 28.52 25.25 32.98
3 22.92 9.95 85.71 100 67 83.72 84 90.70
4 13.57 4.30 89.29 92.86 57.14 52.38 71.43 66.67
pp 5 791 5.53 96.40 97.30 37.50 23.53 45.83 29.41
6 16.10 9.32 94.29 95.71 51.85 47.06 55.56 47.06
Mean (3-6) 15.12 7.27 91.42 96.47 53.37 51.67 64.20 58.46
Mean (7-13) 39.56 36.67 90.76 92.97 25.99 27.53 25.99 27.53
Mean (3-6) 15.52 7.81 92.89 97.68 57.06 62.11 66.85 68.41
o, Mean (7-13)  52.98 48.63 91.37 93.84 24.10 28.02 25.62 30.26

using a limited number of “characters” to reproduce
best the three-dimensional space, we avoid part of the
difficulty inherent in using full three-dimensional space,
which usually leads to a preliminary definition of classes
of conformations. Using a discrete space is, in general,
easier than considering a continuous space, and it offers
the perspective of better understanding the continuity
from one conformation to another by analyzing the
changes in the characters. In the present study, we do
not tackle the problem of going back from alphabet
space to three-dimensional space. We focus exclusively
on our ability to predict words.

Concerning the representativity of the alphabet space,
it is conditioned by the limited number of characters
(SBBs) used to describe protein conformations. Here,
only ten different characters are combined to summarize
loop conformations. However, we observe, for various
lengths, a number of words detected very similar to
the number of loops reported in other studies using a
three-dimensional criterion [15, 19].

Finally, one main interest of using a structural al-
phabet is that it allows a large simplification of the
combinatorial of the search, but we are still not able to
reach a satisfactory representativity for each class when
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the size increases. For short words, the number of classes
remains low; for medium words, this number increases
greatly, and the number of occurrences per class is close
to 1. Thus, the goal of preserving conformational com-
plexity seems to be reached.

4.2 Efficiency of the prediction procedure

In terms of prediction, we use the relationship between
the structural alphabet space and the amino acid space.
Different studies have shown that there exists some
amino acid sequence specificity for certain types of loops
[16, 17, 19]. One major interest of the approach
described herein is to combine both the specificity of
the sequence inherent in each type of loop and the
specificity inherent in each class of words. Using only
words, we should be confronted with the problem of the
representativity of the dataset. Using Dirichlet func-
tions, we can reach an equilibrium between the weak
representativity of words while preserving information
depending on each type of loop. A classical Bayesian
procedure could not be directly applied owing to a lack
of representativity of certain words. Interestingly, we can
study the sequence specificity associated with each word
by observing the effect of the weight used in the Dirichlet
function. Here, our best results are obtained for a weight
value of 0.1, which is low, and suggest that the sequence
specificity of each word is important, even for long sizes,
as already suggested by Efimov [4] and Martin et al. [13].
How efficient can one expect the loop conformation
prediction to be? Our scores are difficult to compare with
the results of other approaches, usually in terms of root-
mean-square (rms) deviations between the predicted
conformation, i.e., one prototype of a cluster of con-
formations, and the target. Using a discrete space, an
adapted metrics is rather in terms of change of charac-
ters. Here, “‘successful prediction” consists, from the
amino acid sequence, in predicting the exact word in
the structural alphabet space. For small sizes (up to 7)
the mean prediction of words belonging to known
classes, and using the only the best score, is close to
30%. This score increases up to more than 50% if one
considers the five best scores. Note that the value of 5
seems particularly small facing the average number of
classes (118 for short loops). Lessel and Schomburg [24]
evaluated the quality of their prediction on the basis of a
knowledge-base method by calculating the rms deviation
to their target loops on the best 20 proposal target loops.
A prediction was marked as successful, if at least one of
the first three proposals had an rms deviation to the
target below 1 A. Their best results are for short frag-
ments, with the percentage of correct predictions of
30%, which is comparable to our first rank results.
Finally, we also introduced the concept of “predict-
ability” of a given sequence to face the problem of un-
known words. Such a concept seems important since the
existence of a large enough database to reach repre-
sentativity for each class is far from being reached. Us-
ing such a criterion, we are able to reject as many as 93%
of unknown small words; however, we accept that only
16% of known words are predicted, which is weak,

among which 57% are scored at the first rank and 67%
are within the five best ranks. Hence, for such cases, the
procedure will only propose five different conformations
among which the correct word is present. Rufino et al.
[25] made an attempt to quantify the predictability of the
loops using a score based, per class, on the frequency of
the amino acids at each location. Their results showed
a sensitivity larger than ours. For short words, they
obtained as many as 75% of predictable loops accepted
for prediction, with a correct prediction rate of 57%;
however, their specificity was only close to 50% and
decreased when the correct prediction of known classes
increased. We did not observe such a fact: the specificity
of our procedure is always more than 90%.

5 Conclusions and perspectives

In the present study, we investigated how plausible the
use of a structural alphabet deduced from a HMM could
be to perform conformational searches for loops. Our
results are still incomplete since the whole study was
performed within the alphabet space and since the
conversion from such an alphabet space back to the
three-dimensional space was not considered. However,
before considering such a step, we need first to assess
whether the simplification introduced by the use of such
an alphabet reaches both the goal of describing loop
conformational complexity and the goal of encompass-
ing some specificity between amino acid sequence and
loop conformation. In this respect, the present results
are encouraging. First, the distribution of loops ob-
served in the structural alphabet space is comparable to
that of other studies. Second, the prediction rates of the
words describing loop conformations in the structural
alphabet space, as well as the fact that we are able to
reject the prediction for most sequences associated with
words not learned, suggest strongly that our procedure is
able to capture the specificity of the sequences.

Interestingly, it is possible to extend this work in
different ways. Considering the Bayesian criterion used,
the results presented here were obtained by using the
same sets of parameters whatever the lengths. It could be
of interest to fit the Dirichlet weight and the predict-
ability threshold for each loop type. In particular, the
Dirichlet weight could be dependent on the number of
occurrences and the length of each word. The rank used
for the correct prediction could be a function of the
criterion of acceptance of the prediction. Moreover, we
did not investigate the influence of the size of the amino
acid sequence window on the prediction rate.

Also, using a detailed structural alphabet to ensure
a good description of the conformational complexity of
the three-dimensional structures leads to the problem of
a weak representativity for classes when the word size
increases. We studied the effectiveness of the procedure
considering no fuzziness of the words. A further direc-
tion to improve the prediction accuracy could be to
consider a “fuzzier space”, by accepting some equiva-
lence between some of our characters defining the
alphabet. One could search for the best equivalences
either starting from analyzing the sequence signatures



associated with each SBB or starting from the geometric
proximity of their conformations.

Finally, if is also possible to extend the methodology

to establish a direct relationship between amino acid
sequence and structural alphabet sequence without
considering the classes of conformation learned. The
combination of such a ‘“‘class-independent” approach
with the methodology described here could lead to
significant improvements.
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